Search results for "critical point theory"

showing 10 items of 10 documents

Four solutions for fractional p-Laplacian equations with asymmetric reactions

2020

We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.

Sublinear functionGeneral MathematicsMathematical analysisDegenerate energy levelsType (model theory)Fractional p-LaplacianCritical point (mathematics)Dirichlet distributionNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicacritical point theory35A15 35R11 58E05p-LaplaciansymbolsFOS: Mathematicsasymmetric reactionsMathematicsMorse theoryAnalysis of PDEs (math.AP)
researchProduct

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

Existence of three solutions for a quasilinear two point boundary value problem

2002

In this paper we deal with the existence of at least three classical solutions for the following ordinary Dirichlet problem:¶¶ $ \left\{\begin{array}{ll} u'' + \lambda h(u')f(t,\:u) = 0\\ u(0) = u(1) = 0.\\\end{array}\right.\ $ ¶¶Our main tool is a recent three critical points theorem of B. Ricceri ([10]).

Dirichlet problemPoint boundaryPure mathematicsMultiple solutions critical point theoryGeneral MathematicsMathematical analysisLambdaValue (mathematics)MathematicsArchiv der Mathematik
researchProduct

Bounded weak solutions to superlinear Dirichlet double phase problems

2023

AbstractIn this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti–Rabinowitz condition.

Double phase operatorAlgebra and Number TheorySettore MAT/05 - Analisi MatematicaCritical point theorySuperlinear nonlinearityLocation of the solutionsMathematical PhysicsAnalysisParametric problem
researchProduct

Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the -biharmonic

2012

By using critical point theory, we establish the existence of infinitely many weak solutions for a class of elliptic Navier boundary value problems depending on two parameters and involving the p-biharmonic operator. © 2012 Elsevier Ltd. All rights reserved.

Nonlinear systemP-biharmonic type operatorsApplied MathematicsMathematical analysisCritical point theoryMathematics::Analysis of PDEsBiharmonic equationInfinitely many solutionNavier boundary value problemBoundary value problemAnalysisCritical point (mathematics)MathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Multiple solutions for semilinear Robin problems with superlinear reaction and no symmetries

2021

We study a semilinear Robin problem driven by the Laplacian with a parametric superlinear reaction. Using variational tools from the critical point theory with truncation and comparison techniques, critical groups and flow invariance arguments, we show the existence of seven nontrivial smooth solutions, all with sign information and ordered.

critical groupSettore MAT/05 - Analisi Matematicacritical point theoryConstant sign and nodal solutionsuperlinear reactionflow invariance
researchProduct

On a min-max principle for non-smooth functions and applications

2009

Extensions of the seminal Ghoussoub's min-max principle [15] to non-smooth functionals given by a locally Lipschitz continuous term plus a convex, proper, lower semi-continuous function are presented and discussed in this survey paper. The problem of weakening the PalaisSmale compactness condition is also treated. Some abstract consequences as well as applications to elliptic hemivariational or variational-hemivariational inequalities are then pointed out. ©Dynamic Publishers, Inc.

min-max resultsAnalysiNon-smooth critical point theory
researchProduct

Infinitely many solutions for a perturbed p-Laplacian boundary value problem with impulsive effects

2017

In this paper, we deal with the existence of weak solutions for a perturbed p-Laplacian boundary value problem with impulsive effects. More precisely, the existence of an exactly determined open interval of positive parameters for which the problem admits infinitely many weak solutions is established. Our proofs are based on variational methods.

Control and OptimizationApplied MathematicsPerturbed p-Laplacian boundary value problemCritical point theory; Impulsive effects; Infinitely many solutions; Perturbed p-Laplacian boundary value problem; Variational methods; Analysis; Geometry and Topology; Control and Optimization; Applied MathematicsVariational methodAnalysiImpulsive effectsInfinitely many solutionsImpulsive effectVariational methodsCritical point theoryInfinitely many solutionGeometry and TopologyAnalysis
researchProduct

Two Nontrivial Solutions for Robin Problems Driven by a p–Laplacian Operator

2020

By variational methods and critical point theorems, we show the existence of two nontrivial solutions for a nonlinear elliptic problem under Robin condition and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.

Nonlinear systemPure mathematicsRobin problemSettore MAT/05 - Analisi Matematicap-LaplacianCritical point theoryMathematics::Analysis of PDEsp-LaplacianRobin problem p-Laplacian Critical point theoryCritical point (mathematics)Mathematics
researchProduct

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

2008

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

Discrete mathematicsNon-smooth critical point theory minmax theorems symmetric functionsGeneral MathematicsRegular polygonEven and odd functionsDifferentiable functionLipschitz continuityCritical point (mathematics)MathematicsGlasgow Mathematical Journal
researchProduct