Search results for "critical point theory"
showing 10 items of 10 documents
Four solutions for fractional p-Laplacian equations with asymmetric reactions
2020
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.
Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian
2017
Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.
Existence of three solutions for a quasilinear two point boundary value problem
2002
In this paper we deal with the existence of at least three classical solutions for the following ordinary Dirichlet problem:¶¶ $ \left\{\begin{array}{ll} u'' + \lambda h(u')f(t,\:u) = 0\\ u(0) = u(1) = 0.\\\end{array}\right.\ $ ¶¶Our main tool is a recent three critical points theorem of B. Ricceri ([10]).
Bounded weak solutions to superlinear Dirichlet double phase problems
2023
AbstractIn this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti–Rabinowitz condition.
Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the -biharmonic
2012
By using critical point theory, we establish the existence of infinitely many weak solutions for a class of elliptic Navier boundary value problems depending on two parameters and involving the p-biharmonic operator. © 2012 Elsevier Ltd. All rights reserved.
Multiple solutions for semilinear Robin problems with superlinear reaction and no symmetries
2021
We study a semilinear Robin problem driven by the Laplacian with a parametric superlinear reaction. Using variational tools from the critical point theory with truncation and comparison techniques, critical groups and flow invariance arguments, we show the existence of seven nontrivial smooth solutions, all with sign information and ordered.
On a min-max principle for non-smooth functions and applications
2009
Extensions of the seminal Ghoussoub's min-max principle [15] to non-smooth functionals given by a locally Lipschitz continuous term plus a convex, proper, lower semi-continuous function are presented and discussed in this survey paper. The problem of weakening the PalaisSmale compactness condition is also treated. Some abstract consequences as well as applications to elliptic hemivariational or variational-hemivariational inequalities are then pointed out. ©Dynamic Publishers, Inc.
Infinitely many solutions for a perturbed p-Laplacian boundary value problem with impulsive effects
2017
In this paper, we deal with the existence of weak solutions for a perturbed p-Laplacian boundary value problem with impulsive effects. More precisely, the existence of an exactly determined open interval of positive parameters for which the problem admits infinitely many weak solutions is established. Our proofs are based on variational methods.
Two Nontrivial Solutions for Robin Problems Driven by a p–Laplacian Operator
2020
By variational methods and critical point theorems, we show the existence of two nontrivial solutions for a nonlinear elliptic problem under Robin condition and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.
2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS
2008
AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.